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Abstract 

In this work, a generalization of the Kissinger equation was extended to several solid-state 
kinetic models, and the expressions for the correction term were also deduced from the 
algebraic equations of the differential (f(~)) and integral (g(~)) functions. 
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1. Introduction 

The experimental study of solid-state decomposition kinetics by DTA has been 
performed by several authors [1-6]. 

The determination of kinetic parameters using the Kissinger method [7,8], 
probably the most popular in this family of  methods, is based on the equation 

ln(fl/T2max) = - E / R T m a  x + I n ( A R / E )  (1) 
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where fl is the heating rate (K min '), Tmax is the maximum reaction rate tempera- 
ture (K), E is the activation energy (kJ mol-J), A is the pre-exponential factor 
(min ') and R = 8.3143 kJ tool -l K ~ is the gas constant. 

The plot of ln(fl/T~lax) against 1/Tm,x should be a straight line with a slope of 
- E / R  and an intercept equal to ln(AR/E). 

However, this method has been criticized, and afterwards modified, for two main 
reasons. 

Firstly, its application is limited to DTA data, assuming that the maximum 
reaction rate corresponds to the endothermic peak temperature of a DTA curve. 
Nevertheless, as has been demonstrated by Dollimore et al. [9], the method is 
generally applicable to any conventional technique based on linearly rising temper- 
ature, avoiding error in the Tma x value. 

On the other hand, the Kissinger method assumes that the rate of reaction can be 
described by an equation of the form 

dc~/dl = k(1 - ~)~ (2) 

where e, t and k have the usual meaning and n is the reaction order, which is 
calculated from the shape index S of the DTA curve according to 

n = 1.26(S)'/2 (3) 

Eq. (3) has been proposed by Kissinger considering that E/RT = oo and neglecting 
the influence of the peak width on the S value. 

Nevertheless, several authors [ 10,11] have pointed out that Eq. (2) has no general 
validity for heterogeneous solid-state reactions. In fact, this equation can have 
theoretical significance only in those cases where the value of n is 0, 1/2, 2/3, or 1. 

Thus, if it is desired to study the kinetics of solid thermal decomposition 
reactions by the Kissinger method, under dynamic temperature conditions using a 
constant heating rate, it is necessary to derive new expressions for Eq. (1), taking 
into account the different types of rate controlling heterogeneous processes. 

In the present work, the generalization of the Kissinger equation is extended to 
different kinetic models of the type discussed by Brown et al. [12] using differential 
( f(e))  and integral (g(c0) functions. 

2. Theory 

In this sense, the first attempt has been outlined by Elder [13,14]. This author 
considers that, if the temperature of the sample is increased at a constant rate 
fl = dT/dt, the rate of a thermally induced solid reaction can be written 

dc~/dT = Am T m exp( -E/RT)f(cO (4) 

where the term Am Tm (m =½ or 1), according to the transition state theory, 
expresses the pre-exponential factor A as a function of temperature [15] and f(~) 
depends on the type of rate controlling process. 
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From Eq. (4), and taking into account, as did Kissinger, the condition for the 
maximum reaction rate on a thermal curve is given by 

(d2~/dT2)r_ Tmax = 0 

Elder derived the following generalized Kissinger equation 

ln( fl '~=\T~+×2 J --E/RTma.+ln[~-C~m(~ ..... ) ]  

(5) 

(6) 

with a correction term q~,.(~ . . . .  ) ,  which is a function of the reaction mechanism, 
given by the equation 

- - f ' ( ~  . . . . .  ) 
(~.',, (~max) ~-- (7) 1 + mRTr,la,,/E 

where ~max is the fractional extent of reaction value corresponding to the maximum 
rate temperature Tma ×. 

However, the application of differential or integral methods in the non-isothermal 
kinetics of solid-state reactions usually assumes, according to the Arrhenius theory, 
the temperature independence of the pre-exponential factor A. Thus, Eqs. (6) and 
(7), for m = 0, can be simplified to 

I 1 ln(fl/T2ax) = -E/RTma × + In E -  40(C~m~×) (8) 

and 

~0(0~max) = - - f r (0~max)  (9) 

Table  1 
Solid-state kinetic models  used for the general izat ion o f  the Kissinger  equa t ion  

Model  Symbol  f (2 )  g(~) 

A v r a m i  Erofeev A2 
Avrami  Erofeev A3 
Avrami  Erofeev A4 
Prou t  T o m p k i n s  BI 
M a m p e l  power  law PI 
Exponent ia l  law El  
Two-d imens iona l  phase  b o u n d a r y  R2 
Three-d imens iona l  phase  b o u n d a r y  R3 
One-d imens iona l  diffusion DI  
Two-d imens iona l  diffusion D2 
Three-d imens iona l  diffusion 
( Jander  equat ion)  D3 
Three-d imens iona l  diffusion 
( G i n s t l i n g -  Brounsh te in  equat ion)  D4 
First  order  FI 
Second order  F2 
Thi rd  order  F3 

2(1 - ~)[ - l n ( l  e)]1/2 
3(1 - : 0 [ -  ln(1 - c0] 2/3 
4 ( l - ~ ) [  ln(I c~)] 3/4 
~( l - ~) 
g / ~  I l/n 

2( l - ~)t/2 
3( l ~)2/3 
(1/2)~ 
[ - I n (  1 - ~ ) ]  

( 3 / 2 ) ( 1 _ ~ ) 2 / 3 [ 1 _ ( 1 _ ~ )  1/3] i 

( 3 / 2 ) [ ( 1 - c 0  1 / 3  1]- i  
(1 ~) 
(1 ~)2 

(1/2)(1 - ~)~ 

[ - In( 1 - c0] 1/2 
[ - In( 1 - c0] 1/3 
[ - l n ( l  ff)] 1/4 
ln[:~/(1 - :0] 

In 
1 - ( 1 - -  c0  1/2 
1 - ( 1  - - c 0 1 / 3  
~2 

+ (1 c 0 In(1 - ~) 

[1  - ( 1  - ~ ) 1 / 3 1 2  

( 1 - 2ct/3) - ( 1 -- ~)2/3 
In( 1 ~) 

(1 ~ ) - '  
( 1 - - ~ )  2 
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T a b l e  2 
E x p r e s s i o n s  for  

M e c h a n i s m  

the c o r r e c t i o n  term der ived  f r o m  f ( c  0 a n d  g(ct) f u n c t i o n s  s u m m a r i z e d  in T a b l e  1 

~0 (c%.~) W(g(c~a ×)) 

A2 2[_ ln ( l_cG, . x ) ] l /2 [_ ln ( l_Otm.×)] l /2  2g(~max) __ g(~max) I 
A3 3 [ - l n ( 1  ~m~x)] 2/3 2[ In(1 ~,.~x)] )/3 3g(am~x) 2g(c~ . . . .  ) 1 
A4  4[ _ l n (  1 -  c~max)]3/4 3[ _ l n (  1 -  %~x)]  ,/4 4g(c~ . . . .  ) - 3g(C~rnax) ' l  
B1 2~ . . . .  --  1 (eg( ...... ) _ 1)/(eg( . . . .  ) + 1) 

P1 (1 -- n)~mal/x " (1 -- n)g(~max) - ' / "  
E1 --1 1 
R 2  (l__~max) 1/2 [l__g(~max) ] 1 
R3 2(l__C~m~x) 1/3 2 [ 1 - - g ( ~  . . . .  )] I 
D1 ( l/2)C~m2x (1/2)g(~ma×) ' 
D 2  (l__:~max) l [ _ l n ( l _ C ~ m ~ O ]  2 

(1 - ~ , , , ~ )  1 / 3  1/2 1 +2g(C%~x)l/2[1 -g(c~m~,,)l/2] -l  
D 3  

[1 - (1 - ~ . . . .  ),/312 2g(0%ax) 

(1/2)(1 Ctm~) 4/3 
D 4  

l ( l -  C~max)1/3--112 

F I  1 1 

F2  2 ( 1 -  ~Xma×) 2g(~max) ~ 
F3 (3/2)(1 -- ~ . . . .  )2 (3/2)g(~ . . . .  ) ' 

The plot of the left hand side of Eq. (8) vs. 1/Tmax should be a straight line from 
whose slope the activation energy can be calculated. 

As can easily be seen by comparing Eq. (8) with Eq. (1), the correction term 
qS0(~ma X) affects the intercept value, which is constant only for first order processes 
because, in this particular case, ~b0(~max ) = 1. 

Nevertheless, several authors [16,18] have shown that, for the remaining kinetic 
models, the error in the activation energy directly calculated from the slope of a 
ln(fl/T2max) vs. 1/Tm,x plot does not exceed 5%. Thus, it seems reasonable to assume 
that the pre-exponential factor A must be the kinetic parameter that reflects most 
significantly the effect induced by the correction term. 

From Eq. (9), using the f (e )  functions for the solid-state kinetic models summa- 
rized in Table 1, we have derived the expressions for qS0(C~m~x) presented in Table 2. 

On the other hand, as is well known, the non-isothermal kinetics of solid 
decomposition reactions can be studied by methods based on the integral kinetic 
equation, which can be written 

;0 ; dc~/f(c 0 = (A/~) e x p ( - E / R T )  d T  (lO) 
o 

or, in short form 

g(cO = S(T) (11) 

where the temperature-dependent part of Eq. (10), S(T), cannot be solved analytically. 
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Taking as a reference the method developed by Wimmers [ 19] to calculate TPR 
patterns using reduction kinetic models and to analyze the influence of the heating 
rate on the TPR peak maximum, we will afterwards derive the expressions for the 
correction term in function of the g(~) equation for the several reaction mechanisms 
listed in Table 1, using Eq. (1 1), proposed by Wimmers, as a starting point. 

For  our purposes we selected as an example the Jander three-dimensional 
diffusion model. 

Inserting in Eq. (1 1) the g(~) expression for a D3 mechanism, we obtain 

[ 1  - ( 1 - ~)1/312 = S(T) ( 1 2 )  

Eq. (12) can be written 

= 1 - [1 - S(T)'I2] 3 (13) 

By differentiating with respect to T, Eq. (13) becomes 

dc~ /d T = (3/2)[1 - S( T)11212 S( T) -112 dS( T) /d T (14) 

From Eq. (11), if T O is much smaller than T, it can be established that 

dS(T)/dT = (A/fl) e x p ( - E / R T )  (15) 

By substituting Eq. (15) into Eq. (14), one obtains: 

do~/dT = (3/2)[1 - S(T)U2]2S(T) -~12(A/fl) e x p ( - E / R T )  (16) 

Taking into account the condition for the maximum reaction rate given by Eq. (5), 
we can write 

(3/2)[I - S(Tmax)~12]S(Tmax) -ll2(dS(T)/dV)r= Vmax{E/RT2max( 1 - S(Tmax) 1/2) 
-- [( 1/2)( 1 -- S(Tmax)l/2)S(Tmax) - '  -[- S(Tmax) -'12](dS(T)/dV)y Ymax } = 0 

(17) 

and, combining Eq. (17) with Eq. (15), we obtain after collecting terms 

E/RT2~,x( 1 -- S(Tmax)'/2) = (A/fi) exp[ -- (E/RTma×)] 
x [ ( 1 / 2 ) ( 1  - -  S(Tmax)l/z)S(Tmax) 1 + S ( T m a x  ) 1/2] 

(18) 

Since, according to Eq. (11), S(Tma×)=g(0%ax), we can write Eq. (18), after 
rearranging, in the form 

= exp(-E/RTmax)(AR/E)L(r  1/2)g(C%ax) + (1 - g (0{max)  1/2) 1] g ~  (19) 

Taking logarithms, one obtains after collecting terms 

lnFAR/E 1 + 2g(~max),/2( 1 -- g(~max)1/2) - '7 ,  ln(fi / T2,x ) ~ E / R T m  a x + (20) 
L 2g(O%ax) J 

As can be seen from a comparison of Eqs. (1) and (20), the intercept of  the 
ln(fi/T2m~x) vs. 1/Tma~ plot is again affected by a correction term which gives account 
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of the reaction mechanism (D3, in this particular case) through the g(a) kinetic 
equation. 

In a general way, we can write 

ln(fl/T~max) = - E / R T m a x  + in ~ -  W(g(~max)) (21) 

The correction term W(g(~max)  ) for the remaining kinetic models considered in 
this work, which have been deduced following a similar procedure, are presented in 
Table 2. 

For the D2 and D4 mechanisms, the derivation of a relationship of the type 
= f ( S ( T ) )  is not immediate, thus no deduction of W(g(~max)  ) for these cases has 

been made. 
It must also be pointed out that the generalized Kissinger equation for the E1 

mechanism has no physical meaning because ~0(~max) = W(g(0~max) ) = - - 1 .  
Obviously, and it is easy to verify, the expression for the Kissinger equation, 

taking into account the reaction mechanism, must be the same independently of the 
method used for its deduction. 

For  example, we will again consider the D3 mechanism. The expression for the 
correction term deduced by using the Elder method is (see Table 2) 

( 1 - c ~  . . . .  ) - 1 / 3 _ 1 / 2  
(D0(O{max) = [1 - -  (1 - 0{max) 1/3] 2 (22) 

and from the Wimmers method (see Eq. (20)) 

l+2g(C%.x ) ' /211-g(~ .... )1/2] , 
W ( g ( ~ m a x )  ) = (23) 

2g(~max) 
By substituting g(~max) : [ 1 - -  (1 - C~max)l/3]2 into Eq. (23), and after collecting 
terms, we obtain 

1 +211 - ( 1  - -  ~max) l/3](1 -- ~max) ,/3 
m ( g ( ~ m . x )  ) = 211 - ( 1  - C%ax)l/3] 2 

(1 -- amax) -1 /3-  1/2 
-- [1 -- (1 -- amax)l/3] 2 (24) 

which is identical to Eq. (22). 

3. Conclusions 

The classic Kissinger equation proposed for the determination of kinetic parame- 
ters from DTA curves and developed for reactions of order n can be generalized to 
different rate controlling heterogeneous processes, including the Avrami-Erofeev,  
Prout -Tompkins ,  Mampel, exponential law, phase boundary movement, diffu- 
sional and nth order models. 

The generalized Kissinger equation would allow the simultaneous determination 
of both the reaction mechanism and the kinetic parameters from several rising 
temperature experiments at constant heating rate. 
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